Work through the ChemCAL modules "Weak Acids and Bases",

 "Calculations With Weak Acids And Bases" and "Acid-Base Titrations".1. In a titration experiment, 50.0 mL of 0.100 M acetic acid $\left(\mathrm{p} K_{\mathrm{a}}=4.76\right)$ is reacted with NaOH .
(a) Calculate the pH when the following quantities of 0.100 M NaOH have been added:
(i) 0.0 mL (initial pH)
(ii) 25.0 mL
(iii) 45.0 mL
(iv) 50.0 mL
(v) 55.0 mL
(vi) 75.0 mL
(b) Using the calculated values, plot the pH curve for the titration.
(c) Compare your curve with that obtained for Q4 on Sheet 7.
2. The pH of a 0.6 M solution of a weak acid is 4.0 . What percentage of the acid has ionised?
3. The $\mathrm{p} K_{\mathrm{a}}$ of acetic acid is 4.76. Calculate the pH of the following solutions:
(a) 0.2 M acetic acid
(b) 0.2 M sodium acetate
(c) A buffer that is 0.2 M in acetic acid and 0.2 M in sodium acetate
4. What volumes of 0.200 M solutions of HNO_{2} and KNO_{2} are required to make 1.00 L of a buffer solution of pH 3.00 ? (K_{a} for $\mathrm{HNO}_{2}=4.00 \times 10^{-4} \mathrm{M}$)
5. Give the chemical equations and state whether the final solutions are acidic, neutral or basic when the following are dissolved in water.
(a) $\mathrm{Na}_{2} \mathrm{O}$
(b) $\quad \mathrm{Cl}_{2} \mathrm{O}_{7}$
